Maui County Water Use & Development Plan

Final Candidate Strategies Analysis Update

Water Advisory Committee
Upcountry District

February 13, 2008

ELEMENTS OF AN IRP PROCESS

Current Status of Final Strategies Analysis Presentation

- Analysis is Ongoing. This is a Presentation of Consultant's Work In Progress.
- Work has not been reviewed by DWS, BWS, Council or Public.
- Findings Subject to Change Based on Comments and Further Analysis.
- Review is Welcome.

Upcountry District Final Candidate Strategies

- A. Expansion of Raw Water Storage
- B. Full Basal Groundwater Backup
- C. Limited Growth with Extensive Conservation Measures
- D. Expanded Kamole Water Treatment Plant Capacity and Volume

Options Included in All Strategies

- Committed / Near Term Options
 - Pookela Well
 - Olinda WTP Upgrade
 - Piiholo Well
 - Kamole WTP Upgrade
- Phase 6 and Phase 10 Booster Upgrades

Options Considered for Each Strategy

- Demand Side Management Portfolio
 - Included in All Strategies
- Standard for Maintaining Drought Period Service Reliability
 - Development of Upcountry District Capacity
 Expansion Reliability Criteria
 - Alternate Standards Explored to Determine Cost of Reliability Improvements

Independent Components

- Supply Side Leak Reduction Measures
- Production Energy Efficiency Measures
- Energy Production Options
- Stream Restoration Measures
- Watershed Protection and Restoration

Independent Components

- Well Development Policies and Regulation
- Wellhead Protection Ordinance
- Landscape Ordinance
- Drought Period Water Use Restrictions
- Water Rate Design and Pricing Policies
 - Altitude Based Tariff
 - Summer / Winter Rates
 - Drought Period Surcharge

Well Melubia				
Well - Maluhia				
New DWS Well at New Site				
1400 GPM				
w/Transmission from Kupaa				
Derivation:				
Capital Costs by HDA from DWS infor				
Exceptional expected escalation is ac contingency allowance.	zountea in su	DStanual		
Operation costs by HDA.				
operation costs by 115/1				
Type		Basal Well		
System		Central		
Source		Groundwater		
Location		North Waihee		
Aquifer		Waihee (North)		
1		,		
Earliest Online Date	ĺ	2010		Derivation
Capacity (MGD)				20
Installed Capacity		T	2.016	1400 GPM
Criteria Capacity		+	1.344	2/3 Installed Capacity
Effective Sustainable Capacity		+	1.344	2/3 Installed Capacity
		Total		2.5 mounts depending
Capital Costs (\$2004)		Total	Per MGD	
Exploration, Land		\$250,000	\$186,012	\$566 perfect per Kuppe
Drilling		\$424,500	\$315,848	\$566 per foot per Kupaa
Transmission		\$3,070,625	\$2,284,691	9482 feet at \$340 per foot based on Kupaa Transmision costs
Development		\$1,000,000	\$744,048	
			\$0	
		\$150,000	\$111,607	
Contingencies		\$2,447,563	\$1,821,103	50% Contingency based on DWS Engineering estimates that costs would be much higher than \$2002 basis
Total Plant Cost		\$7,342,688	\$5,463,309	
Expenditure Pattern	Year	Nom	Normalized	
·	Serv Date	\$2,447,563	33.3%	Contingency
	-1	\$1,000,000	13.6%	Development, Storage
	-2	\$3,495,125	47.6%	Transmission, Drilling
	-3 -4	\$400,000 \$0	5.4% 0.0%	Exploration, Land, Engineering
	-4 -5	\$0 \$0	0.0%	
	-6	\$0	0.0%	
	-7	\$0	0.0%	
	-8	\$0	0.0%	
Const. Per. Esc. Rate (Nom.)		3.00%		
AFUDC Interest Rate (Nom.)		6.00%		
AFUDC Factor			1.037	
		Total	Per MGD	
Total Capitalized Cost		\$7,614,358	\$5,665,445	
Fixed Operating Costs (\$2004)		PerYear	Per Y/MGD	
Dedicated Operating Labor		\$0	\$0	
Apportioned Operating Labor		\$6,873	\$5,114	Fixed labor derived from FY03 Central district costs from R.W.BeckRate Study district cost analysis, apportioned by
Maintananas Labas		CO	60	project volume. \$0.014/kgal*1.344MGD*365.25.
Maintenance Labor		\$0	\$0	
Fixed Operating Costs		\$0 \$24.534	\$0 #40.252	E Kuh/Kan/Kt lift officiona/theriand and amond and
Electrical Demand		\$24,531	\$18,252	5 Kwh/Kgal/Kft lift efficiency*derived sys demand cost factor*electrical energy cost*installed capacity
Chemicals/Materials		\$0	\$0	
		\$0	\$0	
Maintenance Expenses		φU		
Maintenance Expenses Amort. of Capitalized Rebuild Co	osts	\$0	\$0	
	osts		\$0 \$23,365	
Amort. of Capitalized Rebuild Co Total Fixed Op. Costs	osts	\$0	\$23,365	
Amort. of Capitalized Rebuild Co Total Fixed Op. Costs Variable Operating Costs (\$2004)	osts	\$0 \$31,403		
Amort. of Capitalized Rebuild Co Total Fixed Op. Costs Variable Operating Costs (\$2004) Vertical Lift	osts	\$0	\$23,365 Per KGal	
Amort. of Capitalized Rebuild Co Total Fixed Op. Costs Variable Operating Costs (\$2004) Vertical Lift Variable O&M	osts	\$0 \$31,403	\$23,365 Per KGal \$0.000	E Vubl/Voillitt litt officiones + \$ 24 per Vub 2000
Amort. of Capitalized Rebuild Co Total Fixed Op. Costs Variable Operating Costs (\$2004) Vertical Lift	osts	\$0 \$31,403	\$23,365 Per KGal	5 Kwh/Kgal/Mt lift efficiency * \$.24 per Kwh 2006 energy cost * kt lift / Var0pCost EsrNate ^ (2006-2004)
Amort. of Capitalized Rebuild Co Total Fixed Op. Costs Variable Operating Costs (\$2004) Vertical Lift Variable O&M	osts	\$0 \$31,403	\$23,365 Per KGal \$0.000 \$0.973 \$0.005	5 Kwh/Kgal/Mt lift efficiency * \$.24 per Kwh 2006 energy cost * kt lift / VarOpCost EscRate ^ (2006-2004) DWS 2001 Average escalated to 2004
Amort. of Capitalized Rebuild Co Total fixed Op. Costs Variable Operating Costs (\$2004) Vertical Lift Variable O&M Electrical Energy	osts [\$0 \$31,403	\$23,365 Per KGal \$0.000 \$0.973	kft lift / VarOpCost EscRate ^ (2006-2004)

		Average Ye	ars						
		Demand	Prod	Prod	Prod	Drop	Drop	Pump	Resid
		Subsys	Subsys	Export	Net Req	Import	Export	Import	Unmet
Jpper Kula System	2006	487,276	541,417		541,417		0	-103,417	
opper Kula System	2010		610,497		610,497		0	0	
	2020		700,323		700,323		0	Ö	
	2030		830,263		830,263		0	-82,013	
	SUM		030,203		030,203		0	-397,362	
	00111						0,	007,002	
ower Kula System	2006	776,591	862,879	103,417	966,297	0	420,703	0	
	2010	824,090	915,656	0	915,656	0	471,344	0	
	2020	871,886	968,763	0	968,763	0	418,237	0	
	2030		1,046,003	82,013	1,128,016		258,984	0	
	SUM			397,362		0	10,251,187	0	
/lakawao System	2006		882,586	0	882,586	-420,703	263,980	0	
	2010		1,007,548	0	1,007,548	-471,344	343,714	0	
	2020		1,120,324	0	1,120,324	-418,237	452,001	0	
	2030	1,164,695	1,294,106	0	1,294,106	-258,984	547,500	0]	
	SUM			0		-10,251,187	10,790,374	0	
								_	
łaiku System	2006		449,035	0	449,035	-263,980	0,	0	
	2010		528,769	0	528,769	-343,714	0	0	
	2020		637,056	0	637,056	-452,001	0,	0	
	2030		796,235	0	796,235	-547,500	0	0	
	SUM			0,		-10,790,374	0,	0	
luce control Tetal	2006	2,462,326	2,735,918	103,417	2,839,335	-684,683	684,683	-103,417	
Jpcountry Total	2010		3.062.470				815.059		
				0,	3,062,470	-815,059		0	
	2020		3,426,466	0.012	3,426,466	-870,238	870,238		
	2030	3,569,946	3,966,607	82,013	4,048,620	-806,484	806,484	-82,013	
	SUM			397,362		-21,041,56	21,041,561	397,362	
		Drought Ye	ars						
								_	
		Demand	Prod	Prod	Prod	Drop	Drop	Pump	Resid
		Subsys	Subsys	Export	Net Req	Import	Export	Import	Unmet
Jpper Kula System	2006	528,891	587,657		587,657		0	-222,657	
pper raia dystem	2010		662,636		662,636		0	-224,636	
	2020		760,134		760,134		0	-322,134	
	2030		901,171		901,171		0	-463,171	
	SUM	011,034	901,171		901,171		0	-7,794,400	
	OOW						0	-1,134,400	
ower Kula System	2006	842.916	936,573	222,657	1,159,230	0	0	-327,030	
Oyotom	2010		993,857	224,636	1,218,493	0	0	-386,293	
	2020		1,051,499	322,134	1,373,633		0	-541,433	
	2030		1,135,337	463,171	1,573,638		0	-766,308	
	SUM	1,021,000	.,100,001	7,794,400	.,000,000	0		-13,067,819	
	20.11			.,,			-	2,237,010	
Makawao System	2006	862,167	957,963	327,030	1,284,993	0	263,980	0	
	2010		1,093,597	386,293	1,479,890		162,610	0	
	2020		1,216,004	541,433	1,757,438		73,272	0	
	2030		1,404,628	766,308	2,170,936		0	-163,436	
	SUM			13,067,819		0	1,571,802	0	
				<u>~</u>					
laiku System	2006		450,420	0	450,420		0	0	
	2010		530,401	0	530,401	-162,610	0,	0	
	2020		639,022	0	639,022	0,	0,	-73,272	
	2030	718,823	798,692	0	798,692	0	163,436	0	
	SUM			0,		-1,571,802	0,	0	
I	0000	0.000.0=5	0.000.015	E40.00=	0.400.000	000.000	000.000	540.00	
Jpcountry Total	2006	2,639,352	2,932,613	549,687	3,482,300		263,980	-549,687	
	2010		3,280,491	610,929	3,891,420		162,610	-610,929	
	2020		3,666,660	863,568	4,530,227		73,272	-936,839	
	2030		4,239,828	1,229,478	5,469,307			-1,392,914	
	SUM			20,862,219		-1,571,802		-20,862,219	

DWS System Costs

Comparison With Reference Strategy

Comparison of Upcountry Candidate Strategies

Comparison of Upcountry Candidate Strategies

	Planning Objectives														
DWS UPCOUNTRY SYSTEM CANDIDATE STRATEGIES	Availability	Cost	Efficiency	Environment	Equity	Sustainablility	Quality	Reliabil ity	Streams	Resources	Culture	ОННГ	Agriculture	Conformity	Viability
	MGD	\$ / kgal	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-
	Aver age	20YR Lev.													
CAN DIDATE STRATEGY COMPONENTS	+							+	?			+			
EXP ANDE D ST REAM WATE R DIVERSION													+		
IMP ROVE D COLLECT ION SY STEM EFFICIENCY	+		+					+				+	+	?	
INCREASED SURFACE STORAGE RESERVOIRS	+							+				+	+		
HAIKU SYSTEM BASAL WELL DE VELOPMENT	+							+				+	+	?	
MAK AWA O SYSTEM BASAL WELL DEVELOP MEN								+				+	+	?	
DEMAND SIDE MANAGEMENT PROGRAMS	+	+	+	+		+		+				+	+		
AWALAU TREATMENT PLANT	+							+				+	?/-		
INT ERCONNECTION WITH CENT RAL SYSTEM	?	-	-					+					?	?	
INDEPENDENT STRATEGY COMPONENTS															
SUPPLY SIDE LEAK REDUCTION	+	+	+												
ENERGY PRODUCTION AND EFFICIENCY MEASU		+	+												
STREAM REST ORATION MEASURES		- 1		+		+	+		+	+	+		+/-		
WATERSHED PROTECTION AND RESTORATION	+			+		+	+		+	+	+		+		
WELL DEVELOPMENT POLICIES AND REGULATI				+	+	+	+			+					
WELLHEAD PROTECTION ORDINANCE				+	?	+	+		+	+					
LAN DSCA PE ORDINA NCE	+	+	+					+	+	+					
DROUGHT WATER USE RESTRICTIONS	-	+											+/-		
WATER RATE DESIGN AND PRICING POLICIES			+										+		
												Ì			
												Ì			
												İ			

- What programs can the County implement to encourage customers to use energy efficiently?
- How effective will the programs be as a "resource" to meet future water needs?
- Are the programs cost effective?

- One Indoor DSM Program Currently Characterized for Upcountry District
- One Indoor and one Outdoor Program Characterized for the Central District
- Programs are Analyzed Using an Integrated Capacity Expansion and Production Cost Model
- Characterization is Prospective for Analysis

- Indoor DSM Program for the Upcountry District
 - Direct Installation Program for Residences
 - Installation of Low-Flow Toilets, Showerheads and Faucet Restrictors
 - Five Year Program Costs \$162,000/Year and Reduces Consumption by 25,970 GPD/Year
 - Alternative Program Durations and Intensities
 Characterized and Analyzed

• Conclusions:

- DSM programs can be an effective and costeffective resource to meet future Upcountry District water needs.
- Prospective characterization and analysis of programs am designs is necessary

• Conclusions:

- DSM programs can be an effective and costeffective resource to meet future Upcountry District water needs.
- Review of program characterization and refinement of program designs is necessary

- DSM Program Design Consultant is Being Retained
 - Review of Existing Characterization of DSM
 Programs in Central and Upcountry Analysis
 - Recommend Additional Program Designs
 - Commercial Users
 - Agricultural Users
 - Outdoor Program for Upcountry

A. Expansion of Raw Water Storage

Addition of substantial additional raw water storage for the Upper Kula, Lower Kula and/or Makawao systems.

A. Expansion of Raw Water Storage Variations / Analysis Issues

- Reservoir Size Target System Reliability
- Water System
 - Upper Kula, Lower Kula or Makawao Systems
- Reservoir Operation Objectives
 - Maximize Drought Reliability
 - Optimize Operation Economics
- Financing Alternatives

Reservoir Mass Flow Analysis

Resource Additions

Reference Strategy

100 MG Resv. L.Kula

Ph 10 Boost Add.	2009	Ph 10 Boost Add.	2009
Pha se 6 B oost A dd.	2009	Phase 6 Boost Add.	2009
Ph 10 Boost Add#2	2011	Well 1300 ft Kokomo	2011
Well 1600' (Mak)	2011	100 MG Reservoir	2011
Well 1600' (Mak)	2011	Phase 6 #2 Boost Add.	2014
Phase 6 #2 Boost Add.	2014	Well 1600' (Mak)	2017
Well 1300ft Kokomo	2017	Well 1600' (Mak)	2024
Well 1600' (Mak)	2022	Ph 10 Boost Add#2	2026
Well Supp. (Mak)	2027	Additional Well	2029
Ph 10 3rd Upgrade	2029		

Resource Additions

300 MG Resv. L.Kula

500 MG Resv. L.Kula

Ph 10 Boost Add.	2009	Ph 10 Boost Add.	2009
Phase 6 Boost Add.	2009	Phase 6 Boost Add.	2009
300 MG Reservoir	2011	500 MG Reservoir	2011
Phase 6 #2 Boost Add.	2014	Phase 6 #2 Boost Add.	2014
Well 1300 ft Kokomo	2022	Sup pleme ntal Mak	2028
Well 1600' (Mak)	2027	• •	

A. Expansion of Raw Water Storage Variations / Analysis Issues

- Reservoir Size Target System Reliability
- Water System
 - Upper Kula, Lower Kula or Makawao Systems
- Reservoir Operation Objectives
 - Maximize Drought Reliability
 - Optimize Operation Economics
- Financing Alternatives

A. Expansion of Raw Water Storage Policy Issues

- Cost vs Reliability vs Sustainability
 - Budgeting for Project Capital Costs
 - Reservoir Management Objectives
- Agricultural vs Municipal Service Objectives
 - Protocols for Allocation in Drought Periods
 - Financing Alternatives
- Additional Use of Stream Water

B. Full Basal Groundwater Well Backup

Development of sufficient new basal wells to provide reliable water capacity in "worst case" drought conditions

B. Full Basal Well Backup Variations / Analysis Issues

- Well Locations (Elevations)
- Well Costs
- Hydrology Expected Yield
- Additional Reservoir Alternatives
- Integration with Upcountry Systems
 - Baseline Surface Source Reliability
 - Reservoir Management Protocols

B. Full Basal Well Backup Policy Issues

- Cost vs Reliability vs Sustainability
- EMPLAN Consent Decree Compliance
- Non-DWS Well Development Issues
 - Well Siting Wellhead Protection
 - Well Siting Integration with DWS Systems
 - Capitalization, Source Credits, Entitlements

D. Expanded Kamole WTP Capacity and Volume

Improvements to storage, pretreatment and/or filter capacity to maximize Kamole WTP drought period capacity

D. Kamole WTP Improvements Analysis Issues

- Determination and Analysis of Options
 - Scope of Possible Options
 - Project Costs
 - Resulting Drought Period Reliable Capacity
- Integration with Upcountry Systems
 - Additional Reservoir Alternatives
 - Reservoir Management Protocols

D. Kamole WTP Improvements Analysis

- Reservoir Options Examined
 - Wailoa Ditch Flow Analysis
 - Mass Flow Analysis of Resv. Reliable Yields
 - Cost/Benefit Analysis in Integration Model
- Kamole WTP Filter Upgrade is Already Planned
- Intake Capacity Improvements Evaluated

D. Kamole WTP Improvements Analysis Conclusions

- There is substantial value to improving Kamole WTP drought period reliability.
 - Primary value is in displacing need for expensive but seldom used backup wells.
- Specific means to increase drought period reliability depend upon collaborative and negotiated details.

D. Kamole WTP Improvements Policy Issues

- Cost vs Drought Condition Reliability
- Additional Use of Stream Water
- Agricultural vs Municipal Use of Drought Period Surface Water

C. Limited Growth with Extensive Conservation Measures

Restrictions on growth on Upper Kula system and targeted conservation to keep water demands within surface water system capacity

C. Limited Growth and Conservation Variations / Policy Issues

- Nature and Extent of Growth Restrictions
 - Restrict Number of New Services?
 - Restrict Subdivisions?
 - Restrict Increases in Water Consumption?
 - Restrict Agricultural and Municipal Uses?
- Implementation or Restrictions
 - Interface with Land Use Plans and Regulation
- DHHL Exemption from Restrictions

C. Limited Growth and Conservation Variations / Policy Issues

- Conservation Implementation Thresholds
 - Cost-effective Efficiency Measures
 - Subsidized Efficiency Measures
 - Use Restrictions
- Conservation Implementation Measures
 - Incentives
 - Mandates

Upcountry District Final Candidate Strategies

- A. Expansion of Raw Water Storage
- B. Full Basal Groundwater Backup
- C. Limited Growth with Extensive Conservation Measures
- D. Expanded Kamole Water Treatment Plant Capacity and Volume

Upcountry District Final Candidate Strategies

- A. Expansion of Raw Water Storage
- B. Full Basal Groundwater Backup
- C. Limited Growth with Extensive Conservation Measures
- D. Expanded Kamole Water Treatment Plant Capacity and Volume
- E. ???

	Planning Objectives														
UP COUNTRY CANDIDATE STRATEGIES	Availability	Cost	Efficiency	Environment	Equity	Sustainablility	Quality	Reliability	Streams	Resources	Culture	⁷ нна	Agricutture	Conformity	Viability
	MG D Ave rage	\$ / kgal 20YR Lev.	+/-	+1-	+ / -	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+1-	+/-
CANDIDATE STRATEGIES															
INCREASED RAW WATER STORAGE RESERVOI															
ADD WELL AND BOOSTER PUMPS INCREMENTA															
BASAL WELLS FOR FULL SYSTEM BACKUP															
LIMIT AND REALLOCATE UPPER KULA GROWTH															
IMPROVE KAMOLE WTP DROUGHT RELIABILITY															
COMPONENTS IN ALL STRATEGIES															
COMMITT ED RE SOURCE OPTIONS															
BOOSTER PUMP UPGRADES															
DE MAND SIDE MANA GEMENT PROGRAMS															
INDEPENDENT STRATEGY COMPONENTS															
SUPPLY SIDE LEAK REDUCTION															
ENERGY PRODUCTION AND EFFICIENCY MEASU															
ST REAM REST ORAT ION MEASURES													+ / -		
WA TERS HED PROTECTION AND RESTORATION															
WELL DEVELOPMENT POLICIES AND REGULATI															
WELLHEAD PROTECTION ORDINANCE															
LANDSCA PE ORDINA NCE															
DROUGHT WATER USE RESTRICTIONS													+ / -		
WATER RATE DESIGN AND PRICING POLICIES															
WT P WATER QUALITY IMPROVEMENTS															

Comments Are Encouraged:

ellen.kraftsow@co.maui.hi.us

Ellen Kraftsow Department of Water Supply 59 Kanoa Street Wailuku, HI 96793